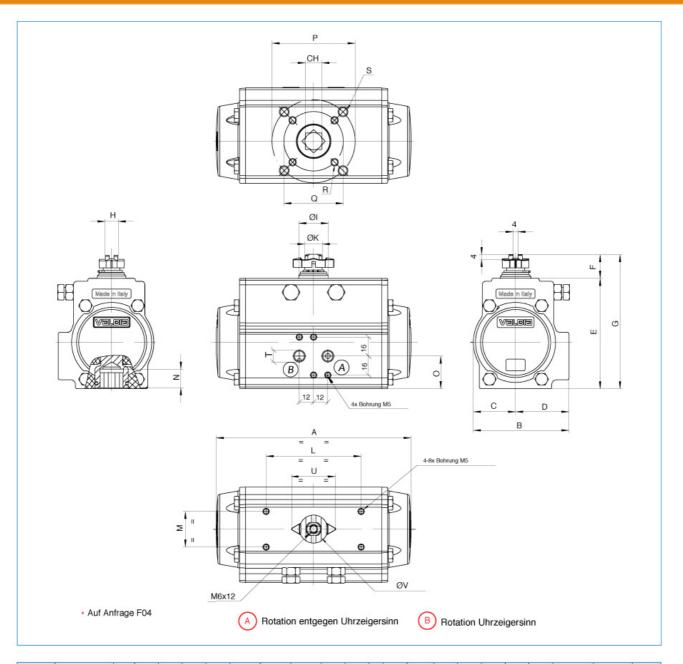
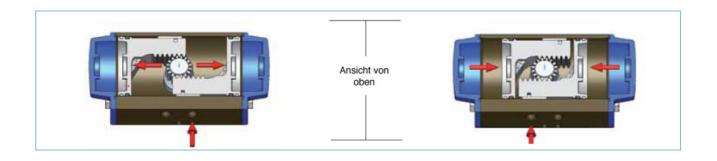


TEIL	BESCHREIBUNG	MATERIAL	BEHANDLUNG	MENGE	Q.TA' SR
DA	Gehäuse	Aluminium extrudiert	Hartanodisiert	1	1
2	Ritzelwelle (ausblassicher)	Stahl	Vernickelt	1	1
• 3	O-ring	NBR		1	1
• 4	Distanzring	POM		1	1
• 5	O-ring	NBR		1	1
• 6	O-ring	NBR		1	1
7	Endlageverstellscheibe	Edelstahl		1	1
8	Distanzring	POM		1	1
• 9	Scheibe	POM		1	1
10	Scheibe	Edelstahl		1	1
** 11	Sicherungsring	Stahl - Steel	Vernickelt	1	1
12	Kolben	Aluminiumdruckguss		2	2
• 13	O-ring	NBR		2	2
• 14	Kolbenführungsband	POM		2	2
• 15	Kolbenführungsbacken	POM		2 [4]	2 [4]
16	Kontermutter	Edelstahl		2	2
17	Einstellschraube	Edelstahl		2	2
18	Feder extern	Stahl	Lackiert	0	
*** 19	Feder Mitte -	Stahl	Lackiert	0	S. Federsatz
20	Feder intern	Stahl	Lackiert	0	
21	Endkappe links	Aluminiumdruckguss	Lackiert	1	1
22	Endkappe right	Aluminiumdruckguss	Lackiert	1	1
23	Dichtung	NBR		2	2
24	O-ring	NBR		2	2
25	Schraube	Edelstahl - Stainless steel		8	8
26	Stellungsanzeiger	Thermoplastisches Gummi TPE		1	1

Verschleißteile

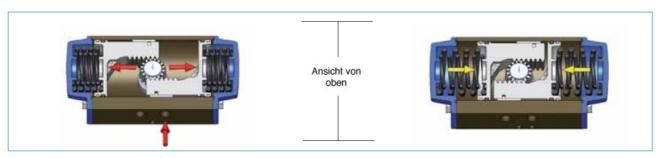

[4] Nur für Baugröße 140-160-180-200-230

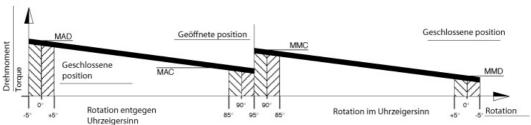
*** Nur für Baugröße



^{**} Verstärkte Ausführung DIN 471 - UNI 7436

Baugr.	BOHRBILD ISO 5211	СН	А	В	С	D	Е	F	G	Н	ØI	J	øк	L	М	N	0	Р	Q	R	s	T ISO 7/1
75	F05 - F07	17	210	94,5	42	52,5	111,1	20	131	13	29	8	19	80	30	19	35	70	50	M6X8	M8X12	1/8"




Gemäss obigem Diagramm bleibt das Drehmoment des doppeltwirkenden Antriebs über den gesamten Weg konstant. Der Anwender kann die Auswahl des jeweiligen Models entsprechend den spezifischen Anforderungen treffen.

Hierbei solten folgende Richtlinien berücksichtigt werden: 1. Legen Sie das maximal benötigte Drehmoment der zu automatisierenden Armatur fest.

- 2. Um einen Sicherheitsfaktor zu erreichen multiplizieren Sie das Drehmoment mit dem Faktor 1,25 bis 1,5 (je nach Armaturentyp und Anwendung).
- 3. Das ermittelte Armaturendrehmoment dem Wert in der entsprechenden Spalte "Steuerdruck" in der Drehmomenttabelle zuordnen
- 4. Von der Spalte "Model" entsprechende Waagerechte bilden um den benoetigten Antrieb, unter Berücksichtigung des Steuerdruckes, festzulegen.

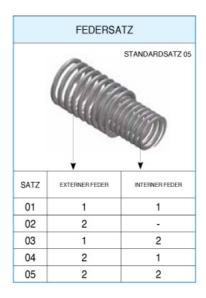
	STEUERDRUCK (bar)											
TYP	2,5	3	4	5	5,5	6	7	8				
DREHOMENT DOPPELTWIRKENDE ANTRIEBE (Nm)												
DA 75	29	35	47,5	60	66	72	84,5	97				

Gemäss obigem Diagramm nimmt das Drehmoment eines federrückstellenden Antriebes über den Weg ab. Verantwortlich hierfür sind die Rückstellfedern, die von dem nach aussen laufenden Kolben zusammengedrückt werden und dadurch deren Kraft entgegenwirken. Die so in den Federn gespeicherte Energie wird eingesetzt um beim Schliessvorgang den Kolben zurückzubewegen. Das vom Antrieb erreichte Drehmoment hängt von vier fundamentalen Werten ab:

Rotation entgegen Uhrzeigersinn (öffnende Bewegung) MAD=Antriebsdrehmoment mit entspannter Feder (0°)

MAC=Antriebsdrehmoment mit gespannter Ferder (90°)

Rotation im Uhrzeigersinn (schliessende Bewegung) MMC=Federdrehmoment mit gespannter Feder (90°)


MMD=Federdrehmoment mit entspannter Feder (0°)

Der Anwender kann die Auswahl des jeweiligen Models entsprechend den spezifischen Anforderungen treffen. Hierbei solten folgende Richtlinien berücksichtigt werden:

- 1. Legen Sie das maximal benötigte Drehmoment der zu automatisierende Armatur fest
- Um einen Sicherheitsfaktor zu erreichen multiplizieren Sie das Drehmoment mit dem Faktor 1,25 bis 1,5 (je nach Armaturentyp und Anwendung).
 Das ermittelte Armaturendrehmoment dem Wert in der entsprechenden Spalte "Steuerdruck" in der Drehmomenttabelle zuordnen. Betrachten Sie hier den MAC-
- 4. Waagerecht nach links bis zur Spalte MMD. Dieser Wert muss grösser sein als der Wert in Spalte MAC.

											STE	JERDI	RUCK	(bar)											
DALICE	SET	FEDERMOMENT (Nm)				FEDERMOMENT (Nm)				2	,5	;	3		4		5	5	,5	6	3	- 7	7	1	В
BAUGR.			DREHMONENT EINFACHWIRKENDE ANTRIEBE (Nm)																						
		0° MMD	90° MMC	0° MAD	90° MAC	0° MAD	90° MAC	0° MAD	90° MAC	0° MAD	90° MAC	0° MAD	90° MAC	0° MAD	90° MAC	0° MAD	90° MAC	0° MAD	90° MAC						
	01	10.1	19.5	15.8	3.9	22.0	10.1	34.4	22.5	IVIAL	IVIAC	MAD	IVIAC	IVIAL	IVIAC	IMAD	IVIAC	WAD	IVIAC						
	02	13.3	25.6	10.0	0.0	18.8	4.0	31.2	16.4	43.5	28.7														
SR75	03	15.1	28.2					29.4	13.8	41.8	26.1	48.0	32.3	54.1	38.5										
	04	18.3	34.3					26.2	7.7	38.6	20.0	44.8	26.2	50.9	32.4	63.3	44.8	1							
	05	23.2	43.0							33.6	11.3	39.8	17.5	46.0	23.7	58.3	36.1	70.7	48.4						

STELLZEIT (SEK)								
ROTATION ENTGEGEN UHRZEIGERSINN (DA)	CCW	0,18						
ROTATION IM UHRZEIGERSINN (DA)	CW	0,15						
ROTATION ENTGEGEN UHRZEIGERSINN SR)	ccw	0,32						
ROTATION IM UHRZEIGERSINN (SR)	CW	0,22						

GEWICHTSTABELLE (KG)								
DA	2,78							
SR	3,39							

LUFTVERBRAUCH							
ROTATION ENTGEGEN UHRZEIGERSINN (DA/SR)	CCW	0.36					
ROTATION IM UHRZEIGERSINN (DA)	CW	0.44					

